
FLECS, a Flexible Coupling Shell
Application to Fluid-Structure Interaction �

Margreet Nool
�
, Erik Jan Lingen

�
, Aukje de Boer

�
, and Hester Bijl

�
�

CWI, Department of Computing and Control, Amsterdam, The Netherlands�
Habanera Software company, Delft, The Netherlands�

TU Delft, Faculty of Aerospace Engineering, Delft, The Netherlands

Abstract. Numerical simulations involving multiple, physically different
domains can be solved effectively by coupling simulation programs, or
solvers. The coordination of the different solvers is commonly handled by
a coupling shell. A coupling shell synchronizes the execution of the solvers
and handles the transfer of data from one physical domain to another. In
this paper, we introduce FLECS, a flexible coupling shell, designed for im-
plementing and applying an interface for multidisciplinary simulations
with superior accuracy. The aim is not to achieve the best possible effi-
ciency or to support a large feature set, but to provide a flexible platform
for developing new data transfer algorithms and coupling schemes.

1 Introduction

Fluid-Structure Interaction (FSI) considers coupled fluid-solid problems, char-
acterized by the interaction of fluid forces and structural deformations, which
occur in many applications in industry and science. Nowadays, the simula-
tion of FSI becomes more and more important, since future structures become
lighter and more flexible and can be applied, e.g., to reduce the load on turbine
blades, or, to reduce the noise on cars. Such applications require a real inter-
disciplinary approach, that can deal with complex physical models and very
different scales.

The Faculty of Aerospace Engineering of the Delft University of Technology
has started a project to develop a generic, open-source coupling shell, named
FLECS [2], that can be used to join two or more arbitrary solvers. FLECS should
provide an innovative combination of high order coupling in space and time.
Moreover, to improve the accuracy and the efficiency of the computation, mul-
tilevel acceleration techniques for the coupling process [6], and fast prototyping
and parallelization techniques will be supported.

The majority of coupling shells are embedded subprograms that have been
developed for coupling two specific solvers. One exception is the coupling li-
brary MPCCI (Mesh based Parallel Code Coupling) [4], which can be used as
a separate program. Although MPCCI is relatively easy to use and provides�

Funding for this work was provided by the National Computing Facilities Foundation
(NCF), under project numbers NRG-2005.03.

many advanced features, it is less suitable for a scientific research community
that is aimed at developing new data transfer algorithms. Numerical acceler-
ation algorithms, like Krylov and multilevel methods - urgently required for
efficiency - are not incorporated. Moreover, since MPCCI only provides the bi-
nary code, the user can not modify the implementation schedule of MPCCI.

In addition to accurate coupling in space, we want to reduce the partitioning
errors in time by using specially designed high-order time integration meth-
ods [5]. It is our goal for FLECS to support solvers that run on parallel comput-
ers, in order to make FLECS suitable for large applications. In particular, FLECS
must be able to deal with data sets that have been distributed over multiple par-
allel processes. In addition, FLECS should support the implementation of paral-
lel data transfer algorithms. At the present stage of the project, experiments are
limited to sequential solvers; each solver, running on its own processing unit,
deals with one particular physical domain. The coupling server, running on a
third processing unit, takes care of the exchange of data between the solvers.
Since FLECS has to deal with separate solver processes, that have been started
independently, it is not possible to use MPI-1 for exchanging data between
those processes. For that reason, FLECS is based on MPI-2 [3].

The remainder of the paper is structured as follows. In Sect. 2, we describe
the importance of coupling two solvers properly to solve interdisciplinary prob-
lems in an efficient and accurate way. Sect. 3 gives an overview of the design of
FLECS. Through the help of a test problem, Sect. 4 illustrates how FLECS can be
used. And finally, Sect. 5 contains some conclusions and future plans.

2 Coupling Methods

Interdisciplinary problems can be solved in two ways. In the first way, the so-
called monolithic approach, a new dedicated solver is developed that solves the
whole system at once. Major advantage is that the solver can be optimized for
the specific problem. Development of such a complex, entirely new solver, will
take an enormous effort, while there already exists many highly efficient and
accurate solvers for the separate domains. The other way, called the partitioned
approach, is to reuse monodisciplinary solvers, that have been developed and
tuned for tens of years. In that case, each physical system is solved individually
and interaction effects are treated as external conditions. A disadvantage of this
approach is that the coupling algorithm is not as straightforward as it looks.
Without much care the accuracy of the coupled problem easily reduces to first-
order in time, irrespective of the order of the separate solvers.

FLECS provides an efficient coupling interface for partitioned computation
of multidisciplinary problems. The design of FLECS allows all kinds of data
transfer algorithms to couple different domains in space and time. Numerical
acceleration techniques, like multigrid, can be incorporated, too.

Γ

structure B

fluid A

overlap gap

 interface

Γn+1

Γn

A fluid A
u(x)

structure B
p (x)
B

p (x)

dx (x)B

dx (x)A

x

Fig. 1. (a) Non-matching grids in 2D and (b) Configuration of the quasi-1D test problem

2.1 Non-matching Grids

If different grid generators are used for both domains, the mesh interface may
not only be non-conforming (nodes at the interfaces do not match, different
discretization and/or interpolation order on both discrete interfaces), but also
non-matching (cf. Fig. 1(a)) in the way that there are gaps and/or overlaps be-
tween the meshes. We remark, that generating matching grids is most of the
time not desirable, because, in general, the simulation on one physical domain
requires a much finer grid than the simulation on the other one. In the remain-
der of this paper, we consider FSI rather than some arbitrary physical domain
interaction.

De Boer et al. [1] gives a detailed study of data transfer methods, and FSI
simulations are performed on non-matching meshes. As coupling method in
this paper, we take the radial basis function method (RBF) with large compact
support. This method, favored by [1], because of its accuracy and efficiency,
does not need orthogonal projection or search algorithms. The coupling be-
tween fluid and structure equations arises from the dynamic and kinematic
boundary conditions (BC) at the fluid-structure interface. The BC for the dis-
placement on the continuous fluid-structure interface � , given by 	�

���������	�

������� , where 	�
 denotes the displacement on either the flow (�) or structure
(�) side of the interface. The displacements of the flow points have to be pre-
dicted once the displacements of the structure points have been determined.
The discrete version of the BC can be formulated as

d
���������� d
���
where �!���#"%$'&)(+*,&
- is the transformation matrix prescribed by the RBF
method. The numbers ./� , the number of flow, and .0� , the number of structure
points on the fluid-structure interface, are usually very small compared to the
total number of structure and flow points. Analogously, the discrete version of
the BC for the pressure forces leads to

1 �2�3�4�5� 1 �+

where the transformation matrix �4��� is of size .0�768./� . The computation of
the matrices �!��� and �4�5� involves the inversion of a small matrix. The ma-
trices �:9+; and ��;59 depend on the coordinates of the interface points. If the
positions of the interface points have been moved, these matrices are recalcu-
lated.

2.2 Coupling Algorithm

We consider, as an example of use, a quasi 1-D channel with a flexible curved
wall as shown in Fig. 1(b). The main velocity, < , of the compressible flow is in
the � -direction and the structure is modeled as a membrane. The diameter of
the tube may vary due to a pressure difference between the pressure in the flow
and in the wall. For more details on this test problem, we refer to [1].

The simulation of the compressible flow and the membrane is solved effec-
tively by coupling two solvers. The solvers exchange data to take into account
the effects on the other domain. Starting at time =?> , each solver computes the
solution at time =@>BADCE=@> on its own particular domain. In general, CE=?> will be
determined by the flow solver. The following steps are carried out to obtain the
solution at =@>�F � from the solution at =?> :

step 1. compute transformation matrices ��>��� and �8>�5�
step 2. obtain the pressure on the structure interface points 1 > �HG I �3�:>��� 1 > ��G I
step 3. calculate the displacements of the structure d
 >JF �� from the structure

equations using the old value of the pressure 1 > �
step 4. use the coupling method to compute the displacements of the tube wall

d
 >�F ���G I ���:>��� d
 >�F ��HG I
step 5. calculate the new pressure 1 >�F ���G I from the fluid equations with the new

displacements of the tube d
 >�F �� .

The subscript K denotes that the operations are only performed on data at the
discrete interface points. The steps to gather and scatter the data on the inter-
face points have been omitted. The computation of � > ��� and � > �5� requires the
coordinates on the same time =?> . In Sect. 4, we will return to this example of
use.

3 Design Overview

FLECS is decomposed into a client library that is to be called from the solver pro-
grams, and a coupling server, in short server, that coordinates the execution of the
solvers, takes care of the coupling of the domains and handles the transfer of
data between the solvers. Both the client library and the server have been imple-
mented in C, so that it is relatively simple to use FLECS in solver programs that
have been written in different programming languages like C++ and Fortran
90. In the simplest case the server comprises a single process (as in Fig. 2) that
executes the transfer algorithm sequentially.

Solver A

Coupling server

Solver B

Client library

Process

Symbols:

Data exchange

LLLLMM
MM
NNNNNO
OOOO

PPPPPQ
QQQQ

RRRRSS
SS
TTTTUU
UU

VVVVVW
WWWW

XXXXXY
YYYY

ZZZZ[[
[[\5\\5\\5\\5\\5\]5]]5]]5]]5]

]5]

Fig. 2. Schematic representation of FLECS

To limit the complexity of the server, it can only couple two solvers at a time.
However, one can couple a solver to two other solver processes by starting a
second server.

3.1 The Client Library and its Usage

The client library provides subroutines for establishing a connection with the
server; for describing the geometry of the coupling interface; for describing the
data that are to be transferred to and from the server; for sending data to the
server; and for receiving data back from the server. If a solver program com-
prises multiple parallel processes, then each process will contain its own copy
of the client library (see Fig. 2), and will establish a separate connection with
the server.

Each solver program can be started independently, using its standard start-
up procedure; there is no need to change the structure of the solver program.
In fact, one only needs to extend the solver program with a small number of
subroutine calls to the client library. For an overview of the functions exported
by the FLECS client library, see Table 1.

To start a coupled simulation, both solvers set up a connection to the server
by calling the client function FLECS Connect. Then the solvers inform the
server about the data to be transferred between them. Therefore, one or more
point sets and data sets are created at each side of the interface, and, transferred
to the server by calling the functions FLECS NewPointSet and FLECS New-
DataSet. The solvers exchange data via the server by calling the functions
FLECS SendDataSet, FLECS RecvDataSet, FLECS Send and FLECS Recv.
The first pair transfers a data set from one solver to the other, and typically in-
vokes a transformation algorithm on the server. The second pair transfers an
arbitrary data array between the solvers, and is particularly used to commu-
nicate convergence and time stepping information between both solvers. Both
pairs of functions require that a send operation matches a corresponding re-
ceive operation. The description of a single iteration step of the test problem of
Sect. 2.2 can be found in Sect. 4.

Table 1. An overview of the functions exported by the FLECS client library

Initialization functions
FLECS Init Initializes MPI, parses the program names, opens the MPI port,

publish the name of the server, save the server address
FLECS Connect Connects solver and coupling server
FLECS NewPointSet Registers point set on coupling interface with coupling server
FLECS NewCoupling Defines coupling between point set on this solver to point set

on another solver
FLECS NewElemSet Defines element set on coupling interface with coupling server
FLECS NewDataSet Defines data set associated with point set

Finalization functions
FLECS Disconnect Disconnects solver from coupling server
FLECS Shutdown Calls MPI finalize and cleans up the allocated memory
FLECS DelPointSet Deletes registered point set
FLECS DelCoupling Deletes created coupling
FLECS DelElemSet Deletes created element set
FLECS DelDataSet Deletes defined data set

Data exchange functions
FLECS SendDataSet Sends data set to other solver via coupling server
FLECS RecvDataSet Receives ^`_badcfehgjik_kl0mon data set from other solver
FLECS Send Sends ap_rqtsu^`_bad_kv data array to other solver
FLECS Recv Receives ap_rqtsu^`_bad_kv data array from other solver

Miscellaneous functions
FLECS SetCoords Updates coordinates of registered point set
FLECS ErrorString Converts error code to human-readable error message
FLECS UseElemSet Use element set

3.2 The Coupling Server

The server consists of two parts, as shown in Fig. 3: a communication and coordi-
nation layer, and a transfer algorithm. The communication and coordination layer
handles the initialization and finalization of the server; exchanges data between
the server and the two solver programs; manages the data structure – including
point sets, couplings, and data sets – that have been created by the client library
on behalf of the solver programs; and manages the coupling-specific data struc-
tures that have been created by a transfer algorithm. Obviously, more than one
data set can be associated with a point set. To associate a data set to a particular
point set, an integer value pset, which uniquely identifies a point set, must be
involved in the data set message.

The transfer algorithm handles the conversion of a data set from one point
set to another point set. This part of the server is based on a plug-in architecture,
that makes it easy to implement new transfer algorithms, see also Sect. 4.1. The
transfer algorithm itself can be implemented in any programming language.
Since the transfer algorithm is a self-contained module of the coupling server,
one can experiment with different types of transfer algorithms without having

Transfer Algorithm

Communication and Coordination Layer

Fig. 3. The coupling server, consisting of a communication and coordination layer and
a transfer algorithm. The arrows indicate the flow of data between the coupling server
and two solver programs

to worry about non-essential details such as communication between the server
and the solver programs.

4 Execution of Test Problem using FLECS Routines

Again, we consider the quasi-1D test problem described in Sect. 2.2. For sim-
plicity, we assume that flow solver w and structure solver x have not been
parallelized and that each solver process runs on a single processing unit. The
server y becomes a third process which takes care of the communication and
the interpolation of the meshes.

Fig. 4 represents a single FSI iteration outlined in nine (parallel) stages. The
various steps of the coupling algorithm, as listed in Sect. 2.2, are shown, and,
on the solvers w and x the calls to the client library of FLECS are inserted. We
choose, that the flow solver determines the progress of the integration process,
i.e., the time step is calculated by the flow solver. In addition, the flow residualz >JF �9 controls the complete system. When the solver w has computed the next
time step CE=@> , (stage i) its value must be sent via the server y to the solver x
using the pair (FLECS Send, FLECS Recv, stage a).

Figure 4 illustrates that by breaking the computation of the transformation
matrices �8>��� and �8>�5� (step 1) into two separate parts, the server can compute
these matrices simultaneously with other operations performed by the solvers
(stages c and {). More precisely, no extra wall clock time is needed to compute
these matrices. Let us assume that ��>��� has been calculated in a previous inte-
gration step (stage g), then the force on the structure can be updated (step 2, stage
b). As a result, we obtain the vector 1 > �HG I asked by solver x , by means of a call
of FLECS RecvDataSet. Next, solver x computes the solution at the structure
domain (step 3, stage b) at time =?>|A3CE=@> . We observe that the computation of�:>��� can be postponed, allowing the solver x to start the computation of step
3 earlier. As a consequence, the computation of ��>��� can be carried out simul-
taneously with step 3 (stage c). The vector d
 >�F ��)G I is needed to carry out step 4,
and corresponds to calls of FLECS SendDataSet and FLECS RecvDataSet
on the solvers B and A, respectively (stage d).

Again, by transferring dx >�F ��HG I (calling FLECS SendDataSet) first and then
the new point set x >�F ��)G I (calling FLECS SetCoords, stage f) more parallelism

can be obtained. However, as stated above, the transformation must be applied
on updated values of d
 >�F ��HG I . The transformation operation delivers new val-
ues d
 >�F ���G I to be transferred to solver w (calling FLECS RecvDataSet, stage d).
Next, the flow solver carries out an integration step from =t> till =@>JF � (step 5).
Simultaneously, the matrix � >�F ���� for the flow-structure interface can be calcu-
lated using the new point sets
 >JF ���G I and
 >�F ��)G I (step 1, stage g).

Let } be some given tolerance, and, let =�~ be the end time, then if

finish �3� >�F �� � }0�p= > ADCE= >:� =t~
is not true, a new iteration step �
A/� can be started after calculating the new time
step CE=@>�F � . In case of convergence, the process terminates, and solver w sends
messages to server y and solver x . This can be carried out by calls to the rou-
tines FLECS Send and FLECS Recv (stage h) to notify solver x to terminate the
calculation, followed by calls to FLECS Disconnect and FLECS Shutdown to
disconnect the connections and to clean up all MPI states.

4.1 The Server Program
The main loop of the server program can look like
int main (int argc, char** argv)
{ flecs_transfer_t transf;
int result;

FLECS_InitTransfer (&transf);
transf.NewCoupling = NewCoupling;
transf.DelCoupling = DelCoupling;
transf.InitPoints = InitPoints;
transf.SetCoords = SetCoords;
transf.TransferData = TransferData;

FLECS_SetTransfer (&transf);
FLECS_SetErrorMode (FLECS_ERRORS_ABORT);
FLECS_Init (&argc, &argv);
FLECS_Connect ();

do
{ result = FLECS_MainLoop (); }
while (! result);

FLECS_Shutdown (); return 0;
}

The do while loop is executed repeatedly until result becomes FALSE. The
subroutine FLECS MainLoop ’listens’ whether there is a message to be received,
where after the server copies the data out of the send buffer and will act accord-
ingly. A message can be one of the functions listed in Table 1. Assume that the ap-
plication demands a multigrid approach, and, assume that FLECS MainLoop

receives a message from solver A for a new coupling (i.e., solver A has called
FLECS NewCoupling). Then the server y may expect a similar request by
solver B, followed by new point sets and associated data sets of both solvers.
We remark that as a consequence of this simple approach, illustrated by the
above program listing, the FLECS’ user does not have to implement the server
program, but only adds some simple programs NewCoupling, DelCoupling,
InitPoints, SetCoords and TransferData. The latter must include the
coupling algorithm. Moreover, the user has to include in his/her solver pro-
grams some calls to FLECS routines. Such calls must correspond, e.g., FLECS
Send and FLECS Recv are appearing in pairs, otherwise an error will be gen-
erated.

5 Conclusions and Future Plans

In this paper, we have introduced FLECS, a coupling shell, which can be used
as an interface for multidisciplinary simulations, e.g., for fluid-structure inter-
action computations. A very simple quasi one-dimensional test problem is used
to show the usage of an preliminary implementation of FLECS, and an overview
of the available routines is given. More investigations are needed to prove its
functionality, to experiment with different kind of coupling methods, such as
nearest neighbor or Gauss interpolation. We would like to extend the parallel
capabilities of FLECS to be able to simulate realistic cases on parallel computer
platforms.

References

1. A. de Boer, A.H. van Zuijlen and H. Bijl. Review of coupling methods for non-matching
meshes, Comput. Methods in Appl. Mech. and Eng., 196 (8), 1515–1525, 2007.

2. E.J. Lingen, M. Nool, A. de Boer and H. Bijl. Design of Flecs, a flexible coupling shell,
2006, see http://www.aero.lr.tudelft.nl/FLECS

3. William Gropp, Ewing Lusk and Rajeev Thurs. Using MPI-2 Advanced Features of
the Message Passing Interface The MIT Press, Cambrigde, 1999.

4. MpCCI, The Fraunhofer-Institute for Algorithms and Scientific Com-
puting (SCAI). Multidisciplinary Simulation through Code Coupling, see
http://www.scai.fraunhofer.de/mpcci.html

5. S. Bosscher A.H. van Zuijlen and H. Bijl. Two level algorithms for partitioned fluid-
structure interaction computations. Comput. Methods Appl. Mech. Eng., 196(8):1458–
1470, 2007.

6. A.H. van Zuijlen and H. Bijl. Implicit and explicit higher order time integration
schemes for structural dynamics and fluid-structure interaction computations. Com-
put. Struct., 83:93–105, 2005.

Flow Solver A Coupling Server � Structure Solver B Stage

FLECS Send(��^��)

FLECS SendDataSet��� � �f� ���

FLECS RecvDataSet�
dx �p� ��f� � �

x �p� ��f� ��� x � �f� ��� dx �p� ��f� �
FLECS SetCoords�

x �p� ��f� � �
SolveFlow � � �p� ��
Compute �5�p� ��
finish � R �d� �� �4�

.or. ^ �p� �'� ^��
FLECS Send(finish)

if finish
FLECS Disconnect
FLECS ShutDown

else
Compute ��^ �p� �

end

Transfer(��^ �)

Receive(p � ��� �)
p � � � � �
Update

�
H � � �H� p � �f� � �

Send(p � � � �)

H � � � �
Coupling

�
x � ��� � � x � � � ���

Receive(dx �d� �� � �)
dx �p� ��f� ���
Update

�
H � � �H� dx �p� �� � � �

Send(dx �p� ��f� �)

Receive(x �p� �� � �)
Receive(x �p� ��f� �)

H �p� �� � �
Coupling

�
x �d� ���� � � x �p� �� � � �

Transfer(finish)

if finish
Break both
connections

end

FLECS Recv(��^ �)

FLECS RecvDataSet�
p � � � � �

SolveStructure� dx �p� ��

FLECS SendDataSet�
dx �p� �� � � �

FLECS SetCoords�
x �p� �� � � �

FLECS Recv(finish)

if finish
FLECS Disconnect
FLECS ShutDown

end

a
q

¡

n

m
g

¢

£

s

Fig. 4. The �¤A2� -th iteration step of the FSI process expressed in FLECS routines
(see Table 1). The superscript � stands for the time step, whereas the subscript� or � indicate that the values belong to the domain of the flow solver A or
the structure solver B. A vector refers to interface values in case the underscoreK is present. Here, =@> and CE=@> denote the current time and time step, x and
dx the position and displacement of the coordinates, $'>� the residual, } indi-
cates the required accuracy of x for FSI iteration. SolveFlow performs a single
iteration with the flow solver, resulting in, among others, the updated value
p >�F �� , whereas SolveStructure carries out a single iteration with the struc-
ture solver, producing, among others, the updated value dx >�F �� . The interface
points of p >JF �� and dx >�F �� are input for the transformation matrices. Finally, the
boolean finish determines whether the program terminates.

